Une notion fondamentale : l’adjonction

HENOSOPHIA τοποσοφια μαθεσις υνι√ερσαλις οντοποσοφια

dans un précédent article:

https://mathesisuniversalis.wordpress.com/2015/06/24/morphismes-geometriques-et-2-categorie-topos-des-topoi-comme-cadre-general-de-nos-travaux/

nous avons vu, à titre d’hypothèse bien sûr, comme c’est le caractère (spéculatif) de tout ce qui est développé ici, que le schéma fondamental de ce que nous appelons μαθεσις uni√ersalis οντοποσοφια pourrait être représenté par ce que l’on appelle un morphisme géométrique entre deux topoi, c’est à dire une paire de foncteurs adjoints entre deux topoi:

U. : E —————-> S

où le topos E , généralement la catégorie Ens des ensembles, jouerait le rôle de ce que Wronski appelle dans sa philosophie élément-être, le topos S correspondrait à l’élément-savoir, le plan de l’idée, et le morphisme à l’élément-neutre qui « unifie » être et savoir.
Nous voyons donc que pour poursuivre, il faut étudier à fond la notion d’adjonction, qui est cruciale en mathématiques et en théorie des catégories.

Or cela demande une compréhension plus que formelle, comme c’est souvent le cas en mathématiques, pour…

View original post 731 mots de plus

Publicités

Laisser un commentaire

Choisissez une méthode de connexion pour poster votre commentaire:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s