Archives du mot-clé nombres premiers

factorisation des nombres entiers

Pour trouver les facteurs premiers d’un entier (très grand, sinon c’est un excellent « footing » mental de les calculer de tête) il y a plusieurs solutions sur le web :

si l’on dispose de Mathematica la commande est (en prenant l’exemple de 666) :

FactorInteger[666]

qui sort :

{{2,1},{3,2},{37,1}}

qui se lit aisément : le premier nombre dans les {} est le facteur premier, le second est son exposant

mais il est plus pratique d’utiliser :

http://factordb.com/

j’avais commencé à l’utiliser pour les grands nombres formés uniquement de chiffres 6 : 666,6666,666666, etc..

mais il est plus simple de le faire pour les nombres composés de chiffres 1, puisque les premiers sont les produits des seconds par 6.

Nous obtenons :

111 = 3 x 37

1111 = 11 x 101

11111 = 41 x 271

111111 = 3 x 7 x 11 x 13 x 37

1111111 = 239 x 4649

11111111 = 11 x 73 x 101 x 137

111111111 = 3^2 x 37 x 333667

1111111111 = 11 x 41 x 271 x 9091

11111111111 =  21649 x  513239

111111111111 = 3 · 7 · 11 · 13 · 37 · 101 · 9901  (le point signifie x , je recopie directement la sortie de factordb)

1111111111111 = 53 · 79 · 265371653

11111111111111 = 11 · 239 · 4649 · 909091 = 1111111  x  11  x  909091

111111111111111 =  3 · 31 · 37 · 41 · 271 · 2906161

1111111111111111 = 11 · 17 · 73 · 101 · 137 · 5882353

11111111111111111 = 2071723 · 5363222357

111111111111111111 = 3^2 · 7 · 11 · 13 · 19 · 37 · 52579 · 333667

que suit le nombre composé de 19 chiffres 1, qui s’avère être premier (voilà qui va faire bander les islamistes obsédés par le nombre 19, comme Edip Yuksel et les autres !!)

ainsi , si l’on compte 1 à part de la suite des nombres premiers, comme c’est la tradition depuis un siècle, les deux nombres composés de chiffres 1 qui sont premiers sont , en dessous de vingt chiffres :

11 et 1111111111111111111 (19 fois 1)

quels sont ceux qui suivent et qui sont premiers aussi ?

il y a le nombre composé de 23 chiffres 1

celui de 24 chiffres a une factorisation remarquable, avec de nouveau un nombre premier composé de 9 et de 0 et de 1 :

 3 · 7 · 11 · 13 · 37 · 73 · 101 · 137 · 9901 · 99990001

de même celui de 36 chiffres 1, qui se factorise :

3^2 · 7 · 11 · 13 · 19 · 37 · 101 · 9901 · 52579 · 333667 · 999999000001

celui composé de 38 chiffres 1 a comme facteur le nombre premier composé de 19 chiffres 1, et un autre composé de 18 chiffres qui sont uniquement des 9 , des 0 et des 1 :

 11 · 909090909090909091<18> · 1111111111111111111

pour le nombre  de 39 chiffres, c’est un facteur premier composé de 24 chiffres, uniquement des 9 , des 0 et des 1, qui apparaît :

 3 · 37 · 53 · 79 · 265371653 · 900900900900990990990991

celui composé de 46 chiffres 1 a comme facteur le second nombre premier que nous ayions trouvé, celui composé de 23 chiffres 1 :

11 · 47 · 139 · 2531 · 549797184491917<15> · 11111111111111111111111

celui composé de 57 chiffres 1 a comme facteur celui composé de 19 chiffres 1 (et bien sûr on a aussi 57 = 3 x 19 , de même que 46 = 2 x 23 et 38 = 2 x 19) :

3 · 37 · 21319 · 10749631 · 1111111111111111111<19> · 3931123022305129377976519

de même celui de 69 chiffres se factorise par celui de 23 chiffres 1, et 69 = 3 x 23, il semble bien que l’on ait ici une loi générale, à élucider :

 3 · 37 · 277 · 203864078068831<15> · 11111111111111111111111<23> · 1595352086329224644348978893

j’ai poursuivi jusqu’au nombre composé de 184 chiffres 1 pour constater qu’ aucun nombre jusque là n’est premier, après 11 et les deux nombres composés de 19 et de 23 chiffres 1 !!!

en fait, selon Sloane, le prochain qui soit premier est composé de 317 chiffres 1 :

 http://oeis.org/A004022

voir aussi la suite des « repunits » :

http://oeis.org/A002275

la suite des « repunits » qui sont premiers est ici, mais sous la forme de leurs indices (sinon ils seraient évidemment trop longs) :

http://oeis.org/A004023

il est facile de montrer, et c’est fait sur la page précédente, que ces indices doivent être des nombres premiers.

voir aussi :

http://oeis.org/A046413

Publicités

gematria par rang du grec : le premier verset de l’Evangile de Jean

α             1

β             2

γ              3

δ             4

ε              5

ζ              6

η             7

θ             8

ι              9

κ           10

λ           11

μ          12

ν          13

ξ          14

ο         15

π         16

ρ         17

σ         18

τ          19

υ          20

φ         21

χ         22

ψ        23

ω        24

0  λογος  = 45 + 18 + 11 + 3 = 77

εν αρχη ην ο λογος  = 18 + 47 + 20 + 77 = 162

mais si l’on compte le iota souscrit comme valant 9 on obtient :

171 = vs 18

Ἐν ἀρχῇ ἦν ὁ λόγος, καὶ ὁ λόγος ἦν πρὸς τὸν θεόν, καὶ θεὸς ἦν ὁ λόγος.

 

Au commencement était la Parole, et la Parole était avec Dieu, et la Parole était Dieu

 

Valeur totale du verset :

Valeur dans le code traditionnel :

3627 = 39 x 93

http://www.biblewheel.com/gr/GR_Database.asp?bnum=43&cnum=1&vnum=1&SourceTxt=SCR&getverse=Go

texte et traduction :

http://ba.21.free.fr/ntgf/jean/jean_1_gf.html

Ἐν ἀρχῇ ἦν ὁ λόγος, καὶ ὁ λόγος ἦν πρὸς τὸν θεόν, καὶ θεὸς ἦν ὁ λόγος.

Ἐν ἀρχῇ ἦν ὁ λόγος = 171 = vs 18 = 1 + 2 + 3 + … + 18

dans le nouveau code.

καὶ ὁ λόγος = 20 + 77 = 97

ἦν = 20

πρὸς = 15 + 16 + 17 + 18 = 66

τὸν = 47

θεόν = 41

καὶ θεὸς = 20 + 46 = 66

ἦν ὁ λόγος = 20 + 77 = 97

Total des 52 lettres et 17 mots du verset :

171 + 97 + 20 + 66 + 47 + 41 + 66 + 97 = 605 = 5 x 11 x 11 = 11 x 55

noter les sommes intermédiaires :

171 + 97 + 20 = 288

171 + 97 + 20 + 66 + 47 = 401

 calcul des sommes de diviseurs de 605 :

http://math.fau.edu/richman/mla/aliquot.htm

1.   s(605)   =   193           5 112
2.   s(193)   =   1           193

 

s(605 ) = 193

193  est le 44 ème nombre premier

http://oeis.org/A000040/b000040.txt

 

Fractran : les algorithmes de Conway

http://mathworld.wolfram.com/FRACTRAN.html

 (17)/(91),(78)/(85),(19)/(51),(23)/(38),(29)/(33),(77)/(29),(95)/(23),(77)/(19),1/(17),(11)/(13),(13)/(11),(15)/2,1/7,(55)/1

 

cette liste très simple de 14 fractions, fabriquée par J H Conway et connue sous le nom de Primegame (un des « programmes » de FRACTRAN) permet d’engendrer tous les nombres premiers !!

Il y a 19 nombres différents dans ces 14 fractions.

On commence avec 2, on le multiplie successivement par chacune des fractions jusqu’à la première qui donne un produit qui soit entier, avec 2 cette fraction est 15/2 qui donne le produit :

2 x 15/2 = 15 

s’il n’existe aucune fraction qui donne un produit entier, le processus stoppe.

puis on recommence avec le produit, qui est ici 15, etc..

Ce calcul donne la suite :

http://oeis.org/A007542

dont on prouve que les puissances de 2 qu’elle contient sont :

2, 2^2, 2^3, etc.. et toutes les puissances de 2 avec un exposant premier, dans l’ordre !!!

la démonstration de ce fait, très simple, est donnée dans ce livre, en annexe :

http://books.google.fr/books?id=hekJ7JDMEVkC&pg=PA249&lpg=PA249&dq=fractran+primegame+conway&source=bl&ots=67N1SCDhW-&sig=wydfz5Tqr5jD2QB6YMCFmR2ot2M&hl=fr#v=onepage&q=fractran%20primegame%20conway&f=false

voir aussi

 http://fr.wikipedia.org/wiki/FRACTRAN

il existe une suite à neuf fractions, qui donne aussi les nombres premiers, à travers cette suite de résultats à partir de 10:

http://oeis.org/A183132/internal

(où ce sont les exposants de 10, et non plus de 2, qui sont les nombres premiers)

Il existe aussi un algorithme Pigame donnant toutes les décimales du nombre π = 3.14159…

http://www.mathematik.uni-bielefeld.de/~sillke/NEWS/fractran

« 365  29  79 679 3159  83 473 638 434  89  17  79
  46 161 575 451  413 407 371 355 335 235 209 122

  31  41 517 111 305 23 73 61 37 19 89 41 833 53
183 115  89  83  79 73 71 67 61 59 57 53  47 43

86 13 23 67 71 83 475 59  41 1  1    1  1 89
41 38 37 31 29 19  17 13 291 7 11 1024 97  1

It computes pi(n), the nth digit of pi:  0 -> 3, 1 -> 1, 2 -> 4, …
i.e. when started on 2^n the next power of 2 to appear is 2^pi(n). »